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Abstract—Increasing demand in higher bandwidth chip-to
chip communications have resulted in challenges related to
modelling and optimization of their electrical performance due
to CPU intensive simulations arising from multiscale structures.
Conventional approaches use various approximations to either
reduce the design complexity or reduce the simulation time,
however, this can lead to inaccurate models and sub-optimal
designs. In this paper, we address this problem by using machine
learning based techniques and propose a Bayesian framework to
model and optimize interconnects in high-speed channels in an
accurate yet efficient fashion.

I. INTRODUCTION
One of the key challenges in designing modern electronic

systems is to ensure reliability and performance of chip-to-
chip interconnect channels. The bandwidth of these channels
needs to be sufficiently high so that they can support higher
data rates. However, communicating at higher speeds degrades
signal integrity due to increased insertion loss, return loss,
delay and cross-talk related intersymbol interference (ISI),
causing higher bit error rates (BER). In order to reduce these
effects and improve signal integrity, the interconnects must
be optimized for their electrical performance so that they can
support the high bandwidth requirement.

Optimization of such high speed channels is a non-trivial
task given that the system has a non-linear response to its
control parameters such as the geometrical parameters of
the interconnects and the material properties. Furthermore, a
single optimization loop usually consists of two CPU exten-
sive stages, namely frequency response generation and eye
diagram simulation. In the first stage, the channel is commonly
modelled as coupled, lossy transmission lines. The impedance
and coupling profile, represented as multiconductor RLGC
matrices or scattering matrix, of the channel is extracted using
a 2D or 3D full-wave EM simulation over a large bandwidth.
This is then exported to a time domain circuit simulator to
be combined with the driver and receiver models and the eye
diagram is simulated using several million pseudorandom bit
sequence (PRBS) as input to capture the eye characteristics at
very low BER contours.

Conventional approaches to high-speed channel optimiza-
tion involves various approximations to reduce the CPU time
required to characterize the jitter and eye opening. For the
frequency response generation stage, W-element transmission
line models are being utilized to parametrize the frequency
response of the channel assuming constant inductance and
capacitance over the frequency band and approximating the
resistance of the transmission line as a function of square
root of the frequency to model the skin effect [1]. For the
eye diagram simulation stage, statistical methods are being
utilized to bypass bit-by-bit simulation to generate the eye
characteristics, but the non-linearity of the driver and receiver

circuits can not be included with statistical approaches, which
can lead to inaccurate results.

In order to optimize the eye diagram using an accurate
simulation framework where no approximations are being
made, machine learning based techniques that are designed
to operate in CPU intensive simulation frameworks, namely
Bayesian Optimization (BO), can be utilized. However, for
the application to high-speed channels, directly using BO
to optimize the eye diagram can still be a CPU exhaustive
procedure as each system query corresponds to two very
expensive simulations.

In this paper, we extend the conventional approach of
surrogate based optimization and propose a new, Bayesian
based framework that uses an additional surrogate model to di-
rectly optimize the eye opening of interconnects in high-speed
channels in an accurate yet efficient way. Usually, the cost of
full-wave EM simulations to generate the frequency response
of these channels are very high due to performing a frequency
sweep from DC to high GHz regimes. If BO is applied directly,
at every iteration, this frequency sweep has to be performed
from scratch along with expensive eye diagram simulations.
However, single-frequency point simulations require orders of
magnitude less CPU time. Here, we leverage this fact to derive
a surrogate model of the frequency response of the channel by
treating frequency as another input parameter to the predictive
model, hence, eliminate the requirement of high-bandwidth
simulations. This greatly reduces computational overhead of
collecting training data and allows for creating the model with
full-wave EM accuracy in a very efficient fashion. We use
additive Gaussian Process (ADD-GP) [2] as our predictive
model and represent the frequency response of the channel
by multi-conductor RLGC matrices without enforcing strict
frequency dependence on any of its elements. Then, we use
Two-Stage Bayesian Optimization (TSBO) [3] algorithm to
optimize the eye opening by using the derived ADD-GP model
to generate frequency response of the channel and use it in a
commercial circuit solver to perform bit-by-bit time domain
simulation to generate the eye diagram. As an example of the
high speed channel, we consider three single-ended microstrip
transmission lines on a silicon dioxide substrate.

II. GAUSSIAN PROCESS AND BAYESIAN OPTIMIZATION
GPs are powerful and flexible predictors that are being

widely used in both machine learning and electronics design
(EDA) community due to its theoretical and practical advan-
tages. From the theoretical point of view, it has been shown that
neural networks with one hidden layer converges to a GP when
the number of hidden units tend to infinity [4]. Further, GPs
with certain type of kernels have the universality property [5],
meaning they can model any function when there is sufficient
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data. From the practical point of view, being a non-parametric
method, GPs eliminate the need for determining problem
specific model structures encountered in neural networks such
as network architecture, number of hidden layers and hidden
units, learning rate or activation function to be used.

In GP, the model is derived according to the Bayes’
Theorem. Here, the prior used is a joint, multivariate GP with
a mean (µ) and covariance matrix (K), given by:

f1:t = N (µ(x1:t),K(x1:t)) (1)

where x1:t is the multidimensional input vector at time t. The
K matrix, constructed by a predefined kernel function k(x, x′),
of a GP solely determines types of interactions between
different variables that can be captured in the final model. In
an additive GP model, the underlying function is modelled
as summation over all possible interactions between input
variables. This is realized via defining a sub-kernel, ki(xi, x′i),
to every input variable of the problem and parametrizing the
overall kernel function as follows [2] :

k(x, x′) =σ2
f1

D∑
i=1

ki(xi, x
′
i) + σ2

f2

∑
1<i<j<D

ki(xi, x
′
i)kj(xj , x

′
j)

...+ σ2
fD

∑
1<i1<...<in<D

[
n∏
d=1

kid(xid , x
′
id

)

] (2)

where (σfn ) is the variance hyperparameter associated to each
order of interaction; n denotes the maximum allowed order
of interactions among D possible orders. By assigning a
hyperparameter to each order of interaction, the final ADD-
GP model enables to interpret which order contributes more
to the final response. It should also be noted that in this paper,
we choose n = D, where Dth order of interaction corresponds
to a standard GP model. Hence, ADD-GP becomes a superset
of the standard GP where all the variables interact together to
form the prediction. Further, we use the same sub-kernel for
every input variable as squared-exponential function with unit
variance, defined as:

ki(xi, x
′
i) = exp

(
−1

2

(xi − x′i)2

σ2
li

)
(3)

where σli is known as the length-scale parameter. As each
variable has its own sub-kernel, a separate length-scale is
assigned to every parameter, effectively implementing the
automatic relevance determination (ARD).

After defining the kernel function as in (2), the covariance
matrix for the GP prior is constructed as:

K(x) =

k(x1, x1) . . . k(x1, xt)
...

. . .
...

k(xt, x1) . . . k(xt, xt)

 (4)

The training of a GP is performed in a Bayesian framework
to maximize the marginal likelihood [6], corresponding to
finding σf1:D and σl1:D in (2) and (3) along with the standard
deviation of the predicted noise associated with the data, σn.
This is done by using a quasi-newton based gradient descent
method to minimize negative of the log marginal likelihood
function, given by:

log p(y1:t | x1:t) =− 1

2
yT1:t(K + σ2

nI)−1y1:t...

...− 1

2
log |K + σ2

nI| −
t

2
log 2π

(5)

where I is the identity matrix of size t. Finally, the predictive
mean and standard deviation at test points, x∗, are found by:

µ(x∗) = kT (K + σ2
nI)−1f1:t (6)

σ2(x∗) = k∗ − kT (K + σ2
nI)−1k (7)

where k∗ = k(x∗, x∗) and k = k(x∗, x1:t) are as in (2); K is
given by (4) and σn is determined from the training.

A. Two-Stage Bayesian Optimization
The Bayesian framework supplied by the GP model can be

used to develop a global optimization framework for black-box
systems. This is called Bayesian Optimization (BO) [7]. In BO,
the point-wise predictive mean and standard deviation in (6)
and (7) are used to construct an acquisition function, u(x).
In conventional BO, an acquisition function is selected apriori
to the optimization problem. Then, the next set of parameters
to be simulated with the goal finding the global optimizer is
selected as the parameters maximizing u(x). The most popular
strategies to construct u(x) are probability of improvement
(PI), expected improvement (EI) and upper confidence bound
(UCB) criteria, given as:

uPI = Φ
(

(µ(x)− f̃∗ − ζ)/σ(x)
)

(8)

uEI = (µ(x)− f̃∗ − ζ)Φ (Z) + σ(x)φ(Z) (9)

uUCB = µ(x) +Kσ(x), K =
√

2ln(2πM2/(12η)) (10)

where f̃∗ is the best point observed so far, ζ is a hyper
parameter for uPI and uEI , M is number of calls made to
UCB so far, (1− η) is the probability of zero regret for UCB,
Z = (µ(x) − f̃∗ − ζ)/σ(x), Φ(.) and φ(.) are the CDF and
PDF of normal distribution respectively.

In TSBO, the u(x) that best suits the problem is learned
in an adaptive fashion. This is realized via using each u(x)
in (8-10) sequentially and monitoring the contribution of each
function to the problem of finding the global optimum. After
enough observations have been made, the u(x) with the highest
contribution is selected and used for subsequent iterations.
Further, TSBO uses a hierarchical partitioning tree to perform
fast exploration of the underlying sample space and identifies a
tight region that contains the global optimum. Then, this tight
region is fully exploited to find the set of parameters that max-
imizes the underlying function, i.e. x∗ = arg maxx∈XD f(x).
Note that TSBO does not use the additive kernel in (2) for
constructing the GP used for optimization, but uses ARD
Matern 5/2 function, given as:

k(xi, xj) = σ2
f (1 +

√
5r +

5

3
r2)e−

√
5r (11)

where r =
(∑D

d=1
(xi,d−xj,d)

2

σ2
d

)1/2
; σd is the length scale of

each input parameter and σf is the signal standard deviation.

III. HIGH-SPEED CHANNEL MODEL
The structure of the high-speed channel considered in this

work is three single-ended and coupled microstrip transmission
lines on a silicon dioxide substrate as in Fig. 1. The input
parameters, along with their corresponding bounds, are given
in Table I.

In order to create the surrogate model of the microstrip
channel using ADD-GP, 500 samples based on uniform Latin

2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)



Fig. 1. Cross-section of the single ended microstrip channel.

TABLE I. CONTROL PARAMETERS OF THE MICROSTRIP STRUCTURE

Parameter Unit Min Max

Line Width lw µm 0.4 3
Line Thickness tc µm 0.4 3

Spacing s µm 0.4 3
Substrate Height hsub µm 1 5

Frequency f GHz 0.1 20

Hypercube Sampling (LHS) are determined. Then, a full-
wave EM solver, Ansys HFSS [8], is used to extract the
coupled RLGC matrices using lines of length 100µm. As
we consider frequency as an input to the surrogate model,
simulations are done at single frequency points rather than a
sweep in the entire bandwidth. Hence, the total amount of
CPU time required to collect training data is greatly reduced.
The dimensionality of the output space defined by the full
rank RLGC matrices is 36. Since the microstrip channel is
a reciprocal and symmetric network, it is sufficient to only
consider 11, 12, 13 and 22 elements of the RLGC matrices
to represent the complete impedance and coupling profile,
effectively reducing the number of outputs to 16.

After the training data is collected, the samples are stan-
dardized to have zero mean and unit standard deviation as
following:

x̃1:N =
x1:N − µ(x1:N )

σ(x1:N )
, ỹ1:N =

y1:N − µ(y1:N )

σ(y1:N )
(12)

where µx, µy , σx and σy denotes the mean and standard
deviation of the input and output training data respectively. For
GP models using a zero mean multivariate normal distribution
as the prior, standardizing the data before training is significant
to relate the training data more to the prior distribution.

The standardized input and output vectors in (12) are used
to perform the training of the ADD-GP model as explained in
Section II. Since GP models can only model a single output
at a time, 16 independent ADD-GP models have been trained
to predict RLGC matrices.

The model quality is assessed using k-fold cross validation
(CV) method with k = 5. Here, the training data is randomly
divided into k folds, each of which containing (N/k) samples.
Then, the ADD-GP model is trained using (k − 1) folds and
kth fold is used as the validation set. The process is repeated k
times so that each fold is used both in training and validation
sets. The quality of the model is then measured using the mean-
squared error (MSE) of the k-fold CV, calculated as:

εCV -MSE =
1

K

K∑
k=1

1

N

N∑
n=1

(
ŷ
(n)
(X\Xk)

− ỹ(n)k

)2
(13)

where ŷ(n)(X\Xk)
is the prediction of the nth sample when the

model is trained using (k-1) folds, i.e. (X \ Xk); ỹk is the
standardized output vector in kth fold and N is the total number
of samples in a single fold. As can be seen from Table II,
the CV-MSE error for standardized RLGC matrices is kept
less than 2.9%, showing the high quality of the predictive
model. A further test of the ADD-GP model is performed by

Fig. 2. Comparison of the ADD-GP model with full-wave simulations for a
channel of length 15mm.

TABLE II. CV MSE VALUES OF THE ADD-GP MODEL

Parameter
ADD-GP
CV MSE Parameter

ADD-GP
CV MSE Parameter

ADD-GP
CV MSE Parameter

ADD-GP
CV MSE

R11 0.001 L11 0.006 G11 0.008 C11 0.027
R12 0.005 L12 0.003 G12 0.025 C12 0.019
R13 0.018 L13 0.007 G13 0.010 C13 0.017
R22 0.005 L22 0.004 G22 0.029 C22 0.022

converting the RLGC matrices to S-Parameters and comparing
it to full-wave simulation of a channel with a length of 15
mm. For a random parameter assignment, the comparison for
insertion loss (IL), return loss (IL), near-end (NEXT) and far-
end (FEXT) crosstalk over the entire bandwidth can be seen
in Fig. 2.

IV. OPTIMIZING HIGH SPEED CHANNEL
The conventional approach to optimize a high-speed chan-

nel is finding the geometrical parameters of the interconnects
that would minimize IL, NEXT and FEXT while matching
the input impedance of the channel to output impedance
of the driver to minimize reflections. We call this approach
as frequency domain optimization (FDO) and summarize its
framework in Fig. 3(a). Usually, a set of target specifications
are determined and the cost function to be minimized via
optimization is defined as:

f(x) =
4∑
i=1

wi(|yi − yit |) (14)

where yi denotes the objectives, i.e. RL, IL, FEXT and NEXT;
yit denotes the target specifications and wi is the weighting
constant to transform multi-objective optimization problem
into a single-objective one. However, FDO approach can often
result in sub-optimal designs in terms of signal integrity. The
trade-offs regarding IL, RL, NEXT and FEXT are determined
prior to the optimization since it is not clear which objective
affects the eye opening more. For instance, crosstalk related
terms may be affecting the eye opening more than IL or RL
for a particular channel and vice versa for another.

The proposed framework in this paper directly optimizes
the eye opening, which results in automatic determination of
frequency domain trade-offs of a particular structure. Com-
pared to directly using BO for the same objective as in
Fig. 3(b), the framework used in this paper eliminates the
need for high-bandwidth frequency domain simulations in
the optimization loop by using the ADD-GP model derived
using only single-frequency simulations. This reduces the
system simulation time in the optimization loop by orders of
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Fig. 3. Comparison of optimization setups used for different approaches.
(a) FDO. (b) Inefficient Direct Eye Optimization. (c) Proposed Framework.

magnitude. For direct eye optimization, the objective function
is defined as:

f(x) = WEHE (15)

where WE and HE denotes width and height of the eye
diagram at a particular BER contour, chosen as 10−12 for
this work. The automated flow of the proposed framework
is summarized in Fig 3(c). Here, geometrical parameters of
the microstrip channel is chosen by TSBO and fed into the
ADD-GP model to generate the S-Parameters of the microstrip
channel with a length of 10mm. The channel S-Parameters are
then used by a commercial circuit solver, Keysight ADS [9],
to perform bit-by-bit simulation to generate the eye height and
eye width at a data rate of 16 Gbps. The output impedance of
the driver is fixed to 50Ω and the load at the receiver is fixed
as a 50Ω resistor in parallel with a shunt capacitor of 1pF to
represent pad parasitics. The eye width and height generated
by ADS is then combined in (15) and fed back into TSBO to
proceed into next iteration.

TABLE III. CHARACTERISTICS OF EYE DIAGRAMS

FDO Direct Eye Optimized

Eye Width 26.6 ps 46.2 ps

Eye Height 90 mV 167 mV

Pk-Pk Jitter 25.9 ps 11.8 ps

The optimization results are summarized in Table III and
in Fig. 4. For the FDO approach, we choose w = 1 for every
objective in (14) and choose the target specifications as zero
for NEXT, FEXT, IL and RL. Compared to FDO, direct eye
optimized channel has resulted in 42.4% and 46.1% increase
in eye height and width along with 54.4% reduction in peak-
to-peak jitter. This is due to automatically adjusting the trade-
offs regarding RL, IL, NEXT and FEXT by directly optimizing
the eye opening. As can be seen in Fig. 4(a), the direct eye
optimization approach have favored parameters that reduce
FEXT more instead of IL and RL and achieved a better overall
channel performance.

V. CONCLUSION
In this work, we have proposed a accurate yet efficient

framework for optimizing signal integrity of high-speed chan-
nels. In order to reduce the CPU time of channel simulation,
we created a surrogate model of RLGC matrices using ADD-
GP. The training data used for this step is collected using
single frequency point simulations, which enabled an inex-
pensive way to derive the model without losing accuracy. The

(a)

(b) (c)

Fig. 4. Performance comparison of FDO to direct eye optimization. (a)
Frequency response of resulting channels. (b) Resulting eye diagram for FDO.
(c) Resulting eye diagram for direct eye optimization.

resulting ADD-GP model is shown to agree well with full-
wave simulations, having a maximum of 2.9% CV-MSE on all
elements of RLGC matrices. This ADD-GP model is then used
in the optimization loop driven by TSBO to directly maximize
eye opening rather than conventional approach of tuning the
frequency response of the channel. Compared to conventional
approach, direct eye optimization resulted in 42.4% and 46.1%
increase in eye height and width along with 54.4% reduction
in peak-to-peak jitter at a data of 16 Gbps.
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